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Abstract. Let C be a binary extremal self-dual doubly-even code of length n ≥ 48.
If such a code has an automorphism σ of prime order p ≥ 5 then the number of fixed
points in the permutation action on the coordinates is bounded by the number of
p-cycles. It turns out that large primes p, i.e. n − p small, occur extremely rarely
in Aut(C). Examples are the extended quadratic residue codes. We prove that
doubly-even extended quadratic residue codes of length n = p + 1 are extremal if
and only if n = 8, 24, 32, 48, 80 or 104. Moreover, we reduce the list of putative
extremal doubly-even codes with an automorphism of prime order p = n − 1 to
merely 12 cases. We conjecture that in fact such an extremal code, if it is not an
extended quadratic residue code of one of the lengths given above, does not exist.

1 Introduction

Let C = C⊥ be a binary self-dual doubly-even code of length n and minimum
distance d. By Gleason [2], we have n = 24m+ 8i, i = 0, 1, 2. Due to Mallows-
Sloane [6] and Rains [8] there is the following bound on the minimum distance

d ≤ 4b n
24
c+ 4 if n 6≡ 22 mod 24,

and C is called extremal if equality holds. Extremal codes do not exist for large
n. If C is doubly-even then n ≤ 3823, by a result of S. Zhang [10]. However,
we know extremal codes only for small lengths, the largest being 136. Thus
there is a big gap between the bound we have for extremal doubly-even codes
and what we can construct. In order to find extremal codes of larger lengths
automorphisms may be helpful.

Let G = Aut(C) and let σ ∈ G be a permutation of order p where p is an
odd prime. The action of σ on the positions produces, say c cycles of length p

and f fixed points, and in this case we call σ of type p − (c, f). In Sections 2
and 3 we investigate the case c = f = 1. In particular we prove that extended
doubly-even quadratic residue codes of length n = p + 1 are extremal only if
n = 8, 24, 32, 48, 80 and 104.
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2 Extremal doubly-even extended QR-codes

Let C = C⊥ be extremal and doubly-even of length n ≥ 48. Furthermore,
we assume that C has an automorphism, say σ, of prime order p > n

2 . The
following result which extends the main theorem of [1] turns out to be crucial
in our investigations.
Proposition. Let C be an extremal binary self-dual code of length 24m+ 2r
with 0 ≤ r ≤ 11 and m ≥ 2. If σ is an automorphism of C of type p − (c, f),
where p ≥ 5 is a prime, then c ≥ f .

Thus we have that σ is of type p − (1, 1) and n = 24m + 8i = p + 1. In
particular,

p ≡ −1 mod 8.

Moreover, i 6= 2 since otherwise 3 | 24m + 16 − 1 = p > 3, a contradiction.
Finally, let s(p) denote the smallest number s ∈ N such that p | 2s − 1.

In [1] the following has been shown
Proposition. If s(p) = p−1

2 then C is an extended quadratic residue code.
The condition s(p) = p−1

2 is very often satisfied. If n = 24m = p + 1 then
m ≤ 153 and s(p) = p−1

2 except the cases

m = 18, 38, 46, 98, 112, 133.

If n = 24m+ 8 = p+ 1 then m ≤ 158 and s(p) = p−1
2 in about half of the cases.

Thus, by Theorem 2, we see that many of the codes in question are extended
quadratic residue codes. For this class of codes we can give a complete answer.
Theorem. Let C = C⊥ be a doubly-even extended quadratic residue code of
length n. Then C is extremal exactly for

n = 8, 24, 32, 48, 80 and 104.

Proof: Let n = p + 1 be the length of C. It is well-known that PSL(2, p) is
contained in the automorphism group of C. We may assume that n is different
from 8, 24, 32, 48, 80, 104 since extended quadratic residue codes of these lengths
are extremal (see [9]). In all other cases we have to find a code word of weight
strictly smaller than 4b n

24c+ 4.
This can be done along the following lines using the computer algebra-

system MAGMA. For each n = p+ 1 we choose a suitable subgroup, say H of
PSL(2, p).

In most cases we choose H to be a cyclic group of order 4 or 6 or a Sylow
2-subgroup of PSL(2, p).
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Next we find the subcode CH of C which consists of those vectors of C
which are fixed by the elements of H. This subcode is in general much smaller
than C.

Finally by direct enumeration we find in CH codewords of weight strictly
less than 4b n

24c+ 4 and the proof is complete. �

In the proof of the previous theorem H is chosen so that the subcode CH is
on the one hand small enough for enumeration and on the other hand contains
codewords of small enough weight.

3 The general case, i.e. s(p) arbitrary

If s(p) is arbitrary we have the following decomposition

F2〈σ〉 = V0 ⊕ V1 ⊕ . . .⊕ Vk

with irreducible modules Vi, each of dimension s(p) for i = 1, . . . , k, and V0

the trivial module. Furthermore, all modules are pairwise non-isomorphic and
V1, . . . , Vk may be considered as the minimal ideals in the group algebra F2〈σ〉.
Moreover, they are generated as ideals or F2〈σ〉-modules by primitive idempo-
tents, say ei1 , . . . , eik . They are unique and can be constructed as follows.

Let α be a p-th root of unity in F2s(p) and let Ci1 , . . . , Cik denote the 2-
cyclotomic cosets modulo p and C0 the trivial coset containing only 0. Then

et =
p−1∑
i=0

εiσ
i with εi =

∑
j∈Ct

αij

where t = i1, . . . , ik is a representative of the coset Ct. Furthermore, any ideal
in F2〈σ〉 is generated by the sum of suitable et′s.

Clearly, such an ideal is a cyclic code since of F2〈σ〉 ∼= F2[x]/(xp−1) as
algebras. Since we are interested in self-dual [p+ 1, p+1

2 ]-codes we have to look
at all possible ideals of type V = Vi1⊕ . . .⊕Vik/2

with the property that V does
not contain Vj

∗ if it contains Vj . There are precisely 2k/2 possibilities for V ,
and V is generated by a suitable sum of primitive idempotents. In our case (a
binary field and p an odd prime) these are duadic codes in the sense of [4] (see
[5] for properties of such codes). There is an easy way to compute the classes
of inequivalent codes.

Proposition. (Pálfy, see [3]) Let C1 and C2 be cyclic [n, k]-codes over Fq.
Assume that gcd(n, ϕ(n)) = 1 where ϕ is the Euler ϕ-function. Then C1 and
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C2 are equivalent if and only if there is a multiplier that maps the idempotent
of C1 to the idempotent of C2.

The multipliers are group automorphisms of the form µa : σ 7→ σa. There
are in fact exactly k multipliers, having different actions on the cyclotomic
cosets and thus on the idempotents. They are of the form µt where t runs
through a set of representatives of the cyclotomic cosets.

For each prime p with s(p) 6= p−1
2 we have to consider 2k/2 different codes.

Each equivalence class consists of at most k codes. Thus the number of inequiv-
alent codes is at least

⌊
2k/2

k

⌋
, including the extended QR code.

In the table below we list all primes p = 24m + 8i − 1 > 48 for i = 0, 1
with s(p) 6= p−1

2 . The boldfaced entries are the exceptions from [1] where
p = 24m − 1. The column “Num of Codes” gives the minimum number of
inequivalent codes, i.e.

⌊
2k/2

k

⌋
. In the second last column d stands for the

extremal minimum distance. There are three types of entries in the column
“w found”. For the case k = 6 the number stands for the weight w < d we
found in a code not equivalent to the QR code. The “not extremal” for k > 6
means that for all possible codes a weight smaller than d was found. In case
we were unable to find a weight smaller than d the field is left with a blank.

The weights have been computed using the computer algebra-system MAG-
MA. The cases with p small we ruled out by a direct enumeration of codewords.
For p large, the algorithm described in the Theorem was used. The problem
which turned out is that little can be said about the automorphism group of
duadic codes different from QR codes. But since they are extended cyclic codes
they possess at least two automorphisms, namely σ of order p and µ2 of order
s(p). Furthermore if s(p) is not prime then 〈µ2

i〉 for some i can be used instead
of H in the Theorem. Therefore we have included the prime factorization of
s(p) in the second column.

Based on the information from the table below there is some evidence for the

Conjecture. There are no extremal self-dual doubly-even codes having an
automorphism of prime order p > n/2 ≥ 24 apart from the cases listed in
Theorem.
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p s(p) k Num of Codes d w found
127 7= 71 18 29 24 not extremal
151 15= 31 · 51 10 4 28 not extremal
223 37= 371 6 2 40 36
431 43= 431 10 4 76 not extremal
439 73= 731 6 2 76 72
631 45= 32 · 51 14 10 108 not extremal
727 121= 112 6 2 124 112
911 91= 71 · 131 10 4 156 not extremal
919 153= 32 · 171 6 2 156 144

1103 29= 291 38 13798 188
1327 221= 131 · 171 6 2 224 208
1399 233= 2331 6 2 236
1423 237= 31 · 791 6 2 240 232
1471 245= 51 · 72 6 2 248 236
1831 305= 51 · 611 6 2 308 300
1999 333= 32 · 371 6 2 236 308
2143 51= 31 · 171 42 49933 360
2287 381= 31 · 1271 6 2 384 380
2351 47= 471 50 671089 396
2383 397= 3971 6 2 400
2671 445= 51 · 891 6 2 448 416
2687 79= 791 34 3856 452
2767 461= 4611 6 2 464
2791 465= 31 · 51 · 311 6 2 468 436
3191 55= 51 · 111 58 9256396 536
3271 545= 51 · 1091 6 2 548 540
3343 557= 5571 6 2 560
3391 113= 1131 30 1093 568
3463 577= 5771 6 2 580
3601 601= 6011 6 2 604
3631 605= 51 · 112 6 2 608 596
3823 637= 72 · 131 6 2 640 612
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